🤖
Introduction to ROS2 and Robotics
  • Introduction
  • ROS2
    • Index
    • IDE and CMake Setup
      • How to add additional include search path
    • ROS2 Building Blocks
      • ROS Workspace and Package Layout
      • Launch File
      • tf2
      • Quality of Service
      • Configurations
        • Rviz Configuration
      • Built-in Types
        • Built-in Message Type
    • ROS Architecture
      • Intra-process Communication
    • Navigation and Planning
      • Navigation Stack and Concepts
      • Navigation2 Implementation Overview
        • 🏗️Cost Map
        • Obstacle Avoidance and DWB Controller
      • DWB Controller
      • Page 5
    • How to launch the Nav2 stack
    • ROS2 Control
      • Online Resources
      • Overview of Codebase
    • 🍳Cookbook
      • Useful Commands
      • How to specify parameters
      • How to build the workspace
      • 🏗️How to publish message to a topic from command line?
      • How to inspect service and make a service call
      • How to properly terminate ROS and Gazebo
      • How to add and remove models in Gazebo simulation dynamically
      • 🚧How to spin nodes
    • 🛒Tutorials
      • Services and Communication between ROS2 and Gazebo
      • Subscription and Message Filters Demo
      • Executor and Spin Explained
      • Lifecycle Node Demo
      • Robotic Arm Demo
      • ⚒️Multiple Robotic Arms Simulation Demo
      • 🚧Introduction to xacro
    • Page
    • 🍺Tech Blog
      • Difference between URDF and SDF and how to convert
  • Gazebo
    • Index
    • Terminology
    • GUI
    • World Frame and Axis
    • Cookbook
    • Page 1
  • Programming in Robotics
    • C++
      • CMake
    • Python
    • Rust
  • Mathematics in Robotics
    • Linear Algebra
    • Matrix Properties
    • Probability
      • Expectation-Maximization Algorithm
    • Multivariable Function and Derivatives
  • Physics in Robotics
  • Control of Dynamic Systems
    • Dynamic Response and Transfer Function
    • Block Diagram
    • PID Controller
  • Robot Modeling and Control
    • Rotation and Homogeneous Transformation
  • Probabilistic Robotics
    • Bayes Filter
    • Kalman Filter
    • Particle Filter
    • Discrete Bayes Filter
    • Motion Model
    • Perception Model
    • Localization
    • SLAM
  • Miscellany
  • Concept Index
    • Quaternions
Powered by GitBook
On this page
  • Introduction
  • Laplace Transform
  • Linear Time-Invariant System
  • Dynamic Response
  • Analyze System Behavior
  1. Control of Dynamic Systems

Dynamic Response and Transfer Function

Introduction

Laplace Transform

Definition: One-sided Laplace Transform

L[f(t)](s)=∫0∞f(t)e−stdt\mathcal{L}[f(t)](s) = \int_{0}^{\infty}f(t)e^{-st}dtL[f(t)](s)=∫0∞​f(t)e−stdt

The inverse of the Laplace is given as follows:

f(t)=12πj∫x0−j∞x0+j∞L[f](s)estdsf(t) = \frac{1}{2\pi{}j}\int_{x_0-j\infty}^{x_0+j\infty}\mathcal{L}[f](s)e^{st}dsf(t)=2πj1​∫x0​−j∞x0​+j∞​L[f](s)estds

where x0x_0x0​is a value that lies on the right side of all the singularities of L[f](s)\mathcal{L}[f](s)L[f](s) in the s-plane.

Prop:

(1)      L[αf1+βf2]=αL[f1]+βL[f2](2)      L[f(t−λ)](s)=e−sλL[f](s)(3)      L[f(at)](s)=1∣a∣L[f](sa)(4)      L[f(t)e−at](s)=L[f](s+a)(5)      L[dfdt](s)=−f(0−)+s⋅L[f](s)(6)      L[∫0tf(τ)dτ](s)=1sL[f](s)(7)      L[(f∗g)(t)](s)=L[f](s)L[g](s)(8)      L[f(t)g(t)](s)=12πj(L[f]∗L[g])(s)(9)      L[tf(t)]=−dds(L[f](s)) \begin{align*} (1)\;\;\; \mathcal{L}&[\alpha f_1 + \beta f_2] = \alpha \mathcal{L}[f_1] + \beta \mathcal{L}[f_2] \\ (2)\;\;\; \mathcal{L}&[f(t-\lambda)](s) = e^{-s\lambda}\mathcal{L}[f](s) \\ (3)\;\;\; \mathcal{L}&[f(at)](s) = \frac{1}{|a|}\mathcal{L}[f](\frac{s}{a}) \\ (4)\;\;\; \mathcal{L}&[f(t)e^{-at}](s) = \mathcal{L}[f](s+a) \\ (5)\;\;\; \mathcal{L}&[\frac{df}{dt}](s) = -f(0^{-}) + s \cdot \mathcal{L}[f](s) \\ (6)\;\;\; \mathcal{L}&[\int_{0}^{t}f(\tau)d\tau](s) = \frac{1}{s}\mathcal{L}[f](s) \\ (7)\;\;\; \mathcal{L}&[(f \ast g)(t)](s) = \mathcal{L}[f](s) \mathcal{L}[g](s) \\ (8)\;\;\; \mathcal{L}&[f(t)g(t)](s) = \frac{1}{2\pi{}j}(\mathcal{L}[f] \ast \mathcal{L}[g])(s) \\ (9)\;\;\; \mathcal{L}&[tf(t)] = - \frac{d}{ds}(\mathcal{L}[f](s)) \end{align*}(1)L(2)L(3)L(4)L(5)L(6)L(7)L(8)L(9)L​[αf1​+βf2​]=αL[f1​]+βL[f2​][f(t−λ)](s)=e−sλL[f](s)[f(at)](s)=∣a∣1​L[f](as​)[f(t)e−at](s)=L[f](s+a)[dtdf​](s)=−f(0−)+s⋅L[f](s)[∫0t​f(τ)dτ](s)=s1​L[f](s)[(f∗g)(t)](s)=L[f](s)L[g](s)[f(t)g(t)](s)=2πj1​(L[f]∗L[g])(s)[tf(t)]=−dsd​(L[f](s))​

Note: the equations (5) and (6) are important. They can convert terms in a differential equations into simple algebraic operations. That's one of the reasons when we analyze system behaviors, we work in the state space instead of in the time domain.

Linear Time-Invariant System

Dynamic Response

Analyze System Behavior

TODO partial-Fraction Expansion

PreviousControl of Dynamic SystemsNextBlock Diagram

Last updated 1 year ago