Control of Dynamic Systems Dynamic Response and Transfer Function Introduction
Definition : One-sided Laplace Transform
L [ f ( t ) ] ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L}[f(t)](s) = \int_{0}^{\infty}f(t)e^{-st}dt L [ f ( t )] ( s ) = ∫ 0 ∞ f ( t ) e − s t d t The inverse of the Laplace is given as follows:
f ( t ) = 1 2 π j ∫ x 0 − j ∞ x 0 + j ∞ L [ f ] ( s ) e s t d s f(t) = \frac{1}{2\pi{}j}\int_{x_0-j\infty}^{x_0+j\infty}\mathcal{L}[f](s)e^{st}ds f ( t ) = 2 π j 1 ∫ x 0 − j ∞ x 0 + j ∞ L [ f ] ( s ) e s t d s where x 0 x_0 x 0 is a value that lies on the right side of all the singularities of L [ f ] ( s ) \mathcal{L}[f](s) L [ f ] ( s ) in the s-plane.
Prop:
( 1 ) L [ α f 1 + β f 2 ] = α L [ f 1 ] + β L [ f 2 ] ( 2 ) L [ f ( t − λ ) ] ( s ) = e − s λ L [ f ] ( s ) ( 3 ) L [ f ( a t ) ] ( s ) = 1 ∣ a ∣ L [ f ] ( s a ) ( 4 ) L [ f ( t ) e − a t ] ( s ) = L [ f ] ( s + a ) ( 5 ) L [ d f d t ] ( s ) = − f ( 0 − ) + s ⋅ L [ f ] ( s ) ( 6 ) L [ ∫ 0 t f ( τ ) d τ ] ( s ) = 1 s L [ f ] ( s ) ( 7 ) L [ ( f ∗ g ) ( t ) ] ( s ) = L [ f ] ( s ) L [ g ] ( s ) ( 8 ) L [ f ( t ) g ( t ) ] ( s ) = 1 2 π j ( L [ f ] ∗ L [ g ] ) ( s ) ( 9 ) L [ t f ( t ) ] = − d d s ( L [ f ] ( s ) )
\begin{align*}
(1)\;\;\; \mathcal{L}&[\alpha f_1 + \beta f_2] = \alpha \mathcal{L}[f_1] + \beta \mathcal{L}[f_2] \\
(2)\;\;\; \mathcal{L}&[f(t-\lambda)](s) = e^{-s\lambda}\mathcal{L}[f](s) \\
(3)\;\;\; \mathcal{L}&[f(at)](s) = \frac{1}{|a|}\mathcal{L}[f](\frac{s}{a}) \\
(4)\;\;\; \mathcal{L}&[f(t)e^{-at}](s) = \mathcal{L}[f](s+a) \\
(5)\;\;\; \mathcal{L}&[\frac{df}{dt}](s) = -f(0^{-}) + s \cdot \mathcal{L}[f](s) \\
(6)\;\;\; \mathcal{L}&[\int_{0}^{t}f(\tau)d\tau](s) = \frac{1}{s}\mathcal{L}[f](s) \\
(7)\;\;\; \mathcal{L}&[(f \ast g)(t)](s) = \mathcal{L}[f](s) \mathcal{L}[g](s) \\
(8)\;\;\; \mathcal{L}&[f(t)g(t)](s) = \frac{1}{2\pi{}j}(\mathcal{L}[f] \ast \mathcal{L}[g])(s) \\
(9)\;\;\; \mathcal{L}&[tf(t)] = - \frac{d}{ds}(\mathcal{L}[f](s))
\end{align*} ( 1 ) L ( 2 ) L ( 3 ) L ( 4 ) L ( 5 ) L ( 6 ) L ( 7 ) L ( 8 ) L ( 9 ) L [ α f 1 + β f 2 ] = α L [ f 1 ] + β L [ f 2 ] [ f ( t − λ )] ( s ) = e − s λ L [ f ] ( s ) [ f ( a t )] ( s ) = ∣ a ∣ 1 L [ f ] ( a s ) [ f ( t ) e − a t ] ( s ) = L [ f ] ( s + a ) [ d t df ] ( s ) = − f ( 0 − ) + s ⋅ L [ f ] ( s ) [ ∫ 0 t f ( τ ) d τ ] ( s ) = s 1 L [ f ] ( s ) [( f ∗ g ) ( t )] ( s ) = L [ f ] ( s ) L [ g ] ( s ) [ f ( t ) g ( t )] ( s ) = 2 π j 1 ( L [ f ] ∗ L [ g ]) ( s ) [ t f ( t )] = − d s d ( L [ f ] ( s )) Note: the equations (5) and (6) are important. They can convert terms in a differential equations into simple algebraic operations. That's one of the reasons when we analyze system behaviors, we work in the state space instead of in the time domain.
Linear Time-Invariant System
Dynamic Response
Analyze System Behavior
TODO partial-Fraction Expansion